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SUMMARY

In this paper, 2D steep gravity waves in shallow water are used to introduce and examine a new kind of
numerical method for the solution of non-linear problems called the finite process method (FPM). On the
basis of the velocity potential function and the FPM, a numerical method for 2D non-linear gravity waves in
shallow water is described which can be applied to solve 3D problems, e.g. the wave resistance of a ship
moving in deep or shallow water. The convergence is examined and a comparison with the results of other
authors is made.

The FPM can successfully avoid the use of iterative methods and therefore can overcome the dis-
advantages and limitations of such methods. In contrast to iterative methods, the FPM is insensitive
to the selection of the initial solution and the number of unknowns. The basic idea of the FPM can be used
to solve other non-linear problems. Its disadvantage is that much more CPU time is needed to obtain a
sufficiently accurate result.

KEY WORDS Non-linear gravity waves Velocity potential Transformation from non-linear to linear

1. INTRODUCTION

In the study of gravity waves it is generally assumed that the fluid is inviscid. If the flow is
irrotational, there exists a velocity potential function ®(x,y,z;t) from which the velocity
components (u, v, w) can be obtained. If the fluid is also incompressible, the velocity potential
function ®(x, y, z; t) satisfies the Laplace equation

Vi =0
throughout the fluid.

Although the above governing equation for @ is a linear Laplace equation, its two boundary
conditions on the free surface, called the dynamic and kinematic conditions of the free surface, are
unfortunately non-linear and must be satisfied on the unknown free surface. Therefore gravity
wave problems are generally non-linear. This non-linearity leads to difficulties in the numerical
computation of these types of problems. A particular difficulty for the solution of gravity waves,
which is perhaps the main difficulty, is that the free surface elevation is unknown but the two
boundary conditions must be satisfied on it.

Generally, a non-linear discretized algebraic equation with a large number of unknown
quantities will be obtained after numerical discretization of a non-linear problem. The general
methods used widely to solve these kinds of non-linear algebraic equations are iterative methods.
However, the convergence of iterative methods depends greatly on not only the selection of initial
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values but also the number of unknown quantities, i.e. the convergence is sensitive to the number
of unknowns. Another approach is to use semidirect methods'# which can partly overcome the
limitation of iterative methods. However, semidirect methods still use the iterative technique to
solve a set of non-linear algebraic equations at each step of the computation, i.e. semidirect
methods cannot avoid the application of iterative methods.

In this paper we try to use 2D gravity waves in shallow water as an example to describe a new
kind of numerical method for general non-linear problems called the finite process method
(FPM). The FPM avoids the use of iterative methods. From this viewpoint, one could call it a
type of direct method for the solution of non-linear problems.

In 1979, Vanden-Broeck and Schwartz! reported on the numerical computation of 2D non-
linear gravity waves in shallow water. They used an analytical function of a complex variable z to
represent the solution and obtained a non-linear integrodifferential equation for the free surface
which was solved by Newton’s iterative technique. In 1981, Rienecker and Fenton? researched the
same problem from a different angle. They applied a finite Fourier series to give a set of non-linear
equations which were also solved by using Newton’s iterative method. Many other authors
(e.g. References 3—11) have studied 2D gravity waves experimentally, theoretically or numerically.
The numerical results given by different authors using different methods agree well with the
theoretical results and even with the experimental results.

The works described above are excellent. If looked at solely from the viewpoint of the
numerical computation of 2D gravity waves in shallow water, the present work described in this
paper would be of little relevance. However, it should be emphasized that the authors mentioned
above used Newton’s iterative method to solve the non-linear algebraic equations. On the other
hand, their method could not be applied to solve 3D gravity wave problems, e.g. to compute the
wave resistance of a ship moving with a constant velocity in shallow water.

The main purpose of this paper is not to discuss more deeply the numerical method for 2D
gravity waves in shallow water, but to describe a new kind of numerical method which avoids the
use of iterative methods. Another purpose of this paper is to describe a general method for the
solution of 2D and 3D non-linear gravity wave problems which is based on the velocity potential
function.

2. MATHEMATICAL DESCRIPTION

The problem considered here is that of 2D periodic waves moving without change of form over a
layer of fluid on a horizontal bed. With horizontal co-ordinate x and vertical co-ordinate y, the
origin is on the bed and moves with the same velocity C as the waves. Therefore all motion is
steady in the frame of reference. Let D denote the average depth of the water.

Suppose the flow is irrotational. Then there exists a velocity potential function ¢(x, y) such
that the velocity components (u, v) are given by

¢ 0¢
u=-_-, v=—=.
0x Oy
Suppose the fluid is incompressible. Then ¢(x, y) satisfies Laplace’s equation in the field:
¢ 9%¢ .
&7 + W =0 1in Q.

Suppose the fluid is inviscid and without surface tension. Then, on the free surface, ¢(x, y)
satisfies

C*¢c+ 906, +3VPV(VVh) ~2CV4VH, =0 on y=n(x), 1)
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where

1
n(x) = p (Cé.—31VpVe) on y=n(x). @

Here g is the gravitational acceleration, n(x) denotes the wave elevation and C is the wave
velocity.

Expression (2) is the dynamic condition of the free surface. Expression (1) is obtained from the
dynamic and kinematic conditions of the free surface, and the relation

5, d
- —C=
ot Ox
is used.
On the bed, &(x, y) satisfies
¢

For simplicity, define
R[$(x, p)] = C*¢+9¢, +1VV(VP V) - 2CVH Vo,
= C?Prx + 90, + ($2) Pux + 20,0y by +(8,)* yy — 2C(hxbx + ¢y D))
on y = n(x), “4)

1
H{¢(x,y}] = ;(C¢x —31Vé V)

1
=, [C9x 3@ +47)] on y=n(x). ©)
Then the problem considered can be described as
Vi(x,y)=0 in Q, ©)
with boundary conditions
R[$(x,y)] =0 on y=rn(x), Q]
%% =0 on y=0, 8
oy
where
n(x)=H[¢(x,y)] on y=rn(x). )

3. BASIC IDEA OF FINITE PROCESS METHOD

Let £ (p) and £(p) be real continuous functions which satisfy

0 for p=0, ﬁ(p)={

1 f =0,
ﬁ(p)={1 o

for p=1, 0 forp=1,

where f(p) could be called the first type of process function and f (p) the second type of pracess
function. The simplest first-type process function is f{ (p) = p and the simplest second-type process
function is £(p) =1 —p.
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Then a kind of continuous mapping ¢(x, y)—=d(x, y; p), n(x)-n(x;p), Q—-Q(p) can be
constructed as follows:
Vi(x,y;p) =0 in Q(p), (10)

with boundary conditions

AMRLO(x, y; DI+ AP {RLH(X, ;)] — R[Po(x, )]} =0 on y=n(x;p),  (11)

YD) _ o on y=o, (12)
oy
where
n(x; p) = (P HLS(x, y; p)] + L(P)no(x) on y = n(x; p). (13)

Here n4(x) is a freely selected initial wave elevation; ¢, is a freely selected initial velocity potential
which should satisfy

Vio(x,y) =0 in Q,, (14)
with boundary condition
Q¢—°=O on y=0, (15)
dy

where the initial definition domain Q, of the fluid field is defined by y = 54(x) and y = 0.

For simplicity, ¢(x, y; p) and n(x; p), the mapping of ¢(x, y) and 5(x), could be called the zero-
order process; thus (10)—(13) could be called the zero-order process equations.

When p =0, from the zero-order process equations (10)-(13) one can obtain the initial
equation

V2¢(x,3,0) =0 in Q,, (16)
with boundary conditions
R(¢) = R(¢o) on y=no(x), (17)
a—¢ =0 on y=0, (18)
dy
while
n(x; 0) = no(x). (19)

One can see that the initial velocity potential ¢,(x, y) which satisfies the linear equations (14) and
(15) is just the solution of the non-linear initial equations (16)~(19), i.e.

¢(x’ ys 0) = ¢0(xa y)

When p = 1, from the zero-order process equations (10)—(13) one can obtain the final equation

Vi(x,y;1)=0 in Q, (20)
with boundary conditions
R{¢(x,;D]1=0 on y=n(x;1), 21
i1
M__) =0 on y= 0’ (22)

dy
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while
n(x;1)=H{¢(x,y;1)] on y=n(x;1). (23)

The final equations (20)—(23) are the same as the original equations (6)—(9) described in Section 2,
which are just what one wants to solve. Here ¢(x, y; 1) could be called the final velocity potential,
denoted as ¢(x, y); and n(x; 1) could be called the final wave elevation, denoted as n¢(x).
From the above analysis one can see that the zero-order process equations (10)—(13) connect
the freely selected imitial velocity potential ¢4(x,y) and initial wave clevation n4(x) with
solutions of the original equations (6)—(9) described in Section 2. The process of changing the
variable p from zero to unity is just the process of transformation from the selected initial solution
to the final solution. The zero-order process equations (10)—(13) are a special continuous mapping
which gives a kind of relation between the selected initial solution ¢, (x, y), no{x) and the final
solution ¢¢(x, y), n;(x). However, this kind of relation is also non-linear in non-linear problems.
In the following part of this section we try to give a linear relation between initial solution
do(x, ), 1o(x) and final solution ¢;(x, y), n;(x) by using the concept of process derivatives.
Define

0 ;
#70x,3ip) = 2D, (24
W(x; p) = ai%ﬂ 25)

as the first-order process derivatives of ¢(x, y; p) and n(x; p). Then the freely selected initial
solution ¢4 (x, y), 7o(x) and the final solution ¢;(x, y), n¢(x) have the following integral relations:

¢f(xa y) = (b(x’ ¥ 1)
1

=¢(x, y; 0)+J $"(x, y; p)dp

[
1
= Po(x, ) +f ¢M(x, y; p)dp, (26)
Q

ne(x) = n{x; 1)

= n(x; 0) +J n(x; p)dp

8]
1

= fo(x) + J n'"(x; p)dp. (27
0

The equations for ¢'*1(x, y; p) and #'l(x; p) can be obtained from the zero-order process
equations (10)-(13) in the following way.
From (10) and (12) one has

%(quﬁ) = V2l (x, y; p) =0 in Q(p), (28)
0 (3¢ 9"x,y;p) _ _
%<E>_——-—ay =0 ony=0. 29)

The dynamic and kinematic conditions of the free surface must be satisfied on the wave elevation
y = 5(x; p), which is also a function of the process-independent variable p. Therefore deriving (11)
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and (13) for the process-independent variable p one can obtain

dR[¢(x, y; p)]
dp

on y=n(x;p) (30)

fI(PRLG(x, y; P)] +13(p) {RL&(x, y; P)1 — RLdo(x, ¥)1} + LA (P) +4(P)] =0

dH[¢(x, y; p)]

7 (x; p) = f{(PYHL d(x, y; P)I + £, (P) ap + £ (P)o(x). €2))
On the wave elevation y = n(x; p) one has
dR OR OR
- [1] —_— = ’ , 32
"o +n ay °nY n(x; p) (32
dH 0H 0H
Rl ek = n(x; p). 3
BTy oY n(x; p) (33)

Substituting (33) in (31) one has

APH[O(x, y; p)1+ 12 (p)no(x) +£(p) OH[ $(x, y; p)1/0p
1 —f,(p)OHLo(x, y; p)]/ 0y

' (x; p) = on y=n(x;p). (34)

For simplicity, define
dR[¢(x, y; p)1/dy

o) pl = = n(x; p). 3
SLo(x, y; p)i Pl T f(oHb(x viplay 7 n(x; p) (35)

Substituting (32) in (30) and using (34) and (35) one has

OR L V; oH , Vs

RSN fpstatn o) TP - T1g(x ipip] on y=ntin, (9

where

LA +HEIR[S(x, v;p)]—f1(PIR[$o(x, )]
T{¢(x, y;p)pl= — T £

—S[(x v p); P {SL(PHL$(x, y; P)1 +f3(P)Mo(x)} on y=n(x;p). (37)

According to (4) one has

oR 2R a¢,+ R ¢, IR 0¢,,  OR 3¢y, IR aqsyy
op 5¢ op 6¢y Op 0. Op 6¢xy op 0¢,, 0

0R
(14

[1] [1]
a¢ ¢ 5% +a¢n¢ a¢xy

In the same way, according to (5) one can obtain

¢l on y = n(x;p). (38)

GH _oH 3¢,  0H 09,
op O, Op 5¢y op

0
= S I S A o y=n(sp) 69)
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Thus substituting (38) and (39) in (36) one has

OR[¢(x, y; p)] FE(D)STH(x. v p): p] OH[ ¢(x, y; p)]

dp op
R v hosto vl 2 g+ (R L pmysto )
64), p V; ) p 3. 25, p x,y,)p]aﬁ;y LS
R 0R) 1
(amx a¢>w>¢“ a6y, o
=T[¢(x,y;p);p] on y=n(x;p). (40)

Here the relation
P+l =0 in Q(p) (41)
has been used.
Therefore, according to (28), (29), (34) and (40), ¢'*)(x, y; p) and n''1(x; p) satisfy the partial
differential equation

VZo!l(x,y;p) =0 in Q(p), (42)

with boundary conditions

)
<é‘¢x +£(p)SLP(x, y: p): p] 0¢x>¢L” + <—+f(p)S[¢(x y; p% p) a¢y> (H

09,
<6iix 0211>¢§§‘+0¢” ¢4 = TLo(x, y;pp] on y=n(x;p), 43)
##a¢[llg’;’ Y _ 0 on y=0, (44)
while
7(x: p) _K(DHL$(x, v, P)] +12(Po(x) + £ (P)OH[d(x, y; P)Y/Op y=n(xp). (45)

1 —f(p)0H[ ¢(x, y; p)1/0y

Equations (42)-(45) could be called the first-order process equations.

It is very interesting that equations (42)-(44) are a set of linear partial differential equations for
dM(x, y; p). If ¢(x, y; p) and n(x; p) are known, ¢!)(x, y; p) and n'')(x; p) can be obtained by
solving these linear partial differential equations. Then according to (26) and (27) one has

d(x, y; p+ Ap) = ¢(x, y; p) + ¢"')(x, y; p)Ap,
n(x; p + Ap) = n(x; p) + n**(x; p)Ap.

In this way one can obtain the final solution ¢.(x, y), n;(x) indirectly. Generally the first-order
process equations are linear although the zero-order process is non-linear. This is the most
important property of the process. A pure mathematical proof of this property can be given but
will be described in other papers of the author.

If we solve the non-linear zero-order process equations (10)-(13) directly, it seems difficult to
avoid using iterative methods. However, by solving the n, linear first-order process equations
(42)-(45) for ¢!')(x, y; p) and y'}(x; p) (n, = 1, Ap = 1/n,), we can obtain the solution of the
original equations (6)—(9) indirectly without using iterative methods. In other words, a non-linear



734 S. 1. LIAO

problem can be transformed to a complex linear problem by using the concept of process
derivatives.
From (4) and (5) one can obtain

OR[o(x, y; p)]

R (OGNSR o)
%{%‘ﬂ 9+ 20(¢:— C)bey + 6,0y, @)
REEED]_ (g,-cn, “
R 20— 00, “
RLrp] gy (50)
HLELID) 2 (4,- 0 Y
cHLgCrn] L, )

T

I g L (54

W:ng¢w+% yy=§—f;¢xy-§§y¢n- (55)

The process of numerical computation can be described simply as follows.

1. Select the initial wave elevation #,(x) and initial velocity potential ¢q(x, y).

2. Letp,=iApfori=0,1,2,...,n,~1, where, Ap = 1/n,.

3. Solve the linear partial differential equations (42)-(44) to obtain the value of ¢!!i(x, y; p;).
4. Compute the value of n!*)(x; p;) by means of expression (34).

5. Compute the values of wave elevation and velocity potential at the next step p;.,:

O(x, y3 Piv1) = d(x, ¥ p.) + ¢ (x, y; p:)Ap, (56)
n(x; piss) = n(x; p) + n'(x; p,) Ap. (57
6. If p,,, < 1, then go back to step 2.
Here the definition region pe[0, 1] of the process-independent variable p is discretized, which is
why this method is called the finite process method.
One can see that in the above numerical computation, only n, linear partial differential
equations (42)-(44) need be solved (n, > 1, Ap = 1/n,). This means that the original non-linear

problem has been transformed to a set of n, linear problems (n, > 1). Theoretically, by means of a
large computer, almost all linear problems can be solved without great difficulty. Thus from the
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viewpoint of the FPM, theoretically it seems that a non-linear problem could also be solved by a
large computer because the non-linear problem can be approximated by a set of n, linear
problems (1, > 1). In other words, a non-linear problem is just a very complex linear one from the
viewpoint of the FPM.

In the next section, detailed numerical formulae and numerical results for 2D progressive
gravity waves in shallow water are given. It should be emphasized that the numerical method
described here can also be used to solve 3D gravity wave problems, e.g. the wave resistance of a
ship moving in deep or shallow water, by making only a simple expansion and using the
Hess—Smith method.

4. NUMERICAL SOLUTION OF GRAVITY WAVES IN SHALLOW WATER

4.1. Numerical formulae

According to the derivation in the above section, the zero-order process equation for the
velocity potential function ¢(x, y) of 2D progressive gravity waves in shallow water can be
written as

V2(x,y;p) =0 in Q(p), (58)
with boundary conditions
A(P)RLS(x, y; D1 +A(P{RLS(x, y; P)]1 =R ¢o(x,¥)1} =0, on y=1n(x;p), (59)
M=O on y=0, (60)
dy
while
n(x; p) = A(PYH(x, y; P) + £(P)no(x) on y = n(x; p). (61)
The corresponding first-order process equation is
ViU)x, y;p) =0 in Q(p), (62)

with boundary conditions

bi(x, y; PO, 3 P) + by(x, ¥ POL(x, v3 D) + ba(x, y: PYBL(x, 3 p)+ balx, y; PYOL (x, y; P)
=TL[¢d(x,y;p)] on y=n(x;p), (63)

———a"’[l]gx’y;”):o on y=0, (64)
y
where
R ] OH[¢(x, y;
byt 3ip) = FEEEI DLy stge st TLEZEPL on y =i (69)
; OH[$(x, y;
batxin) = FEEIDL L o)stp(x ik TR on y =i, (66
R ; R » Vs
bt i) = HLEC AP _SRUEEEDL oy, 7
batx, y:p) = OO EDL oy =i p), (69)

Opy



736 S. 1. LIAO

while nil(x; p) satisfies

_Si(DHL¢(x, y; D] +12(P)10(x) + £ (P)OH [ H(x, y; )]/ Op
1 —£(p)oH[(x, y; p)1/ 0y

Let k = 2n/L,, denote the wave number. Then it is easily seen that

on y=n(xp). (69

nY(x; p)

#0eyip) = 3. aP)y(x. ) (70)
with .
6,(x 3) = cosh (jky) sin (jkx) )

cosh(jkD) ’

satisfies the Laplace equation (58) and the bed condition (60). Here the a;(p)(j = 1,2,...) are
only dependent on the process-independent variable p.
Then from (70) one has
0¢(x, y; p) o day(p)

= ¢ (x v p) = . =% A
5 D=0 yp = 3SR o) = § doe ) 72

It can be proved that ¢!')(x, y; p) described above also satisfies the Laplace equation (62) and the
corresponding bed condition (64).

In practice, only a finite number of terms ¢;(x, y) can be selected. Similar to the method of
Rienecker and Fenton,? this is the only approximation made in this numerical method. Suppose
M terms ¢i(x,y) (j = 1,2,..., M) are selected. Then one has

M

o0 yip) = 3, aP)ey(x. ) (73)
M

¢M(x, y; p)= .;1 a(p)¢(x, ). (74

For simplicity, define

a(p) = {a;(p)}, a'!l(p) = {a}!)(p)} (G=1L2...,M)

Substituting (73) and (74) in (63) one can obtain the equation for the first-order process derivatives
al)(p) as

M
; [bi(x, y,a; p)(@)): + by(x, y, 8; P)(@;), + b3(x, y, a; p)(@))sx + ba(x, ¥, 8; p)(9)),, ]a!]

=T(x,y,a;p) on y=n(x;p), (75

where
o= .
() = (jk)? sinh (jky)cos (kx) (19)

cosh (jkD)
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Select ay = {a;} (j = 1,2,..., M) as the initial value of a(p), where

2 k
a,=0 for j=23,...,M. (81)

g, = Hwo (5) cosh(kD), (80)

Then one obtains the initial velocity potential ¢q(x, y) as

o(x,y) = ¢(x,y;0) = a,9,(x, y). (82)

The initial wave elevation n,(x) can be given in the form

H
Mo(x) = T‘“’ cos(kx). (83)
In order to obtain the value of a')(p) = {al')(p)} (j = 1,2,..., M) from the linear equation

(75), M points (x;, ;) (i = 1,2,. .., M) on the free surface y =#(x; p) must be given. Owing to the
symmetry, one can distribute these M points on the region [L,/2, L, ] as

x,.=£2‘1[1+(MJ_1>], yj=£2“"—°—cos(kx,.) (G=01,2...,M~1),
where L, is the wave length. Here the parameter « is used to determine the distribution form of
the M points. When « = 1, the M points are equally spaced in the horizontal direction. When
o < 1, the points are spaced coarsely near the crest (x = L,), similar to the Vanden-
Broeck-Schwartz method.!

Then, according to (75), a linear equation with M unknown quantities al'}(p,) (j = 1,2,. .., M)
for p,, = mAp can be obtained:

E(p,) 2" (p,) = t(pm)s (84)
where
t(pm) = { T(x;, yi, a(pm) Pm)} (i=1,2,..., M), (85)
E(pn) = Le(x, y; pm)), (86)
with

eii(Xi, ¥is Pm) = b1 [xi, yi, a(pn); Pm 1 L0;(x0, ¥1) 1 + b2 %45 Y15 8(Pm); Pm] L &5(xi, ¥i)],y
+b3[x;, yi» 8(Pm)s Pm] [¢j(xi’ Yi)Jax + balxis Vir 2(Pm); Pm] [d’j(xi’ Yi)]xy

Gj=12..., M. (87)
If a*)(p,,) is known, one has
a(p, + Ap) = a(p,,) + 2" (p,)Ap  for py+Ap <1, (88)
M
PMILx, y, 8 N(pn) pml = 3, a'N(pw)d;(x,y) for p,+Ap <1 (89)
i/

Then #!)(x;; p,,} can be obtained as

1 . _fll(pm)H[xb Yis a(pm)] +f2,(pm)"0(x1) +f1(pm)aH[xi’ Yi» a(pm)]/ap
055 ) = L~ /i (p)OHT xs, v, a(p)1/0y 00
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where

OH[x;, y;, a(pm)] — OH[x;, y;, a(pn)]

d)g:l] [xi’ Yis 3[1](Pm)]

op 0o,
JH[ x;, y;, a(pp
+_[&(§%3‘(L)_] (M x, y,, a(p)], o1)
y
aH xi’ i a( m) aH x,-, is a( m
[ y p ] = [ y p )] (bxy [xis yia a(pm)]
dy 0¢,
aH xi9 i’a( m)
- ML bty va(pa. ©2)
y
Thus the new free surface elevation can be obtained as
1(Xi P+ AP) = n(Xi; p) + 1 (x;; pw)Ap  for p, +Ap < 1. (93)

Therefore from the above method one can obtain the values of a(Ap) and n(x; Ap) if the initial
wave elevation n,(x) and initial velocity potential ¢o(x, y) are given by selecting freely the initial
wave height H_,. In the same way, from a(Ap) and #(x; Ap) one can obtain a(2Ap) and n(x; 2Ap),
etc. If a(n,Ap) and #(x; n,Ap) are known for Ap = 1/n,, then the solution of the original equations
(6)-(9) has been obtained.

The error in this numerical method is due to two reasons. One is that a finite number of terms
$;(x,») j=1,2,..., M) have been used. On the other hand, the expressions (88) and (93) are
obtained by dispersing the integral relations (26) and (27). This means that the process region
pel0, 1] is discretized.

It is very interesting that the method described above can successfully avoid the use of iterative
methods which have traditionally been applied to solve non-linear problems. Therefore it is
possible for the above method to overcome the disadvantages of iterative methods.

For the above numerical method, the wave length L,,, water depth D and wave velocity C have
to be known quantities and a selected initial wave height H,, must be given. One can select the
wave depth D and gravitational acceleration g so as to make all quantities non-dimensional. Thus
only the ratio of wave length to water depth, L,/D, and the non-dimensional wave velocity
kC?/g have been known quantities and an initial ratio of wave height to wave length, H,,/L,,,
must be selected.

4.2. Numerical results

The method described in this paper is based on the velocity potential function ¢(x, y), whereas
the methods of Vanden-Broeck and Schwartz! and Rienecker and Fenton? were based on the
streamfunction y(x, y). Using the streamfunction ¥(x, y), the kinematic condition of the free
surface can be represented simply as

Y(x,y)=—Q on y=n(x)

Therefore all the results of other authors were given under a constant value of exp(—kQ/C),
e.g. 0:5 or 09. Exp(—kQ/C) is a function of L,/D and kC?/g. For constant exp(— kQ/C) the
value of L, /D is a function of kC?/g. However, the method described in this paper does not
directly use — Q, the value of the streamfunction on the wave free surface. Instead, the non-
dimensional wave velocity kC?/g is a known quantity and the wave height-to-length ratio H,,/L,,
is the numerical result obtained by means of the FPM. This is very different from the methods of
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other authors. Therefore it is rather more difficult to compare directly the results obtained by the
FPM with those of other authors. In spite of this, approximate comparisons are given in order to
examine our numerical method, although a direct comparison could not be made.

The solutions of the original equations (6)—(9) for gravity waves in shallow water are obtained
indirectly by solving n, linear algebraic equations (n, > 1, Ap = 1/n,). Therefore the simplest way
to examine our new numerical method is to inspect whether or not the two boundary conditions
(7) and (9) have been satisfied. For simplicity, let

R[ 3
¢\ = max 7“5(%};';_”] (94)

and

ne— HLo(x, ne)]
D

e, = max (95)
denote the maximum non-dimensional errors of boundary conditions (7) and (9) respectively,
where #; is the numerical resuit for the wave elevation.

Another way to test our numerical method is to examine whether or not the values of the
streamfunction ¥/(x, y) on the wave elevation are the same. According to (73), the horizontal
velocity u(x, y) can be represented as

_ 09 & a;(1)(jk)cosh(jky)cos(jkx)
=k T ,-; cosh(jkD)

(96)

In the frame of reference moving at the same velocity C as the wave, the horizontal velocity o’ is
u=u—C.

Similar to other authors, one can suppose
¥(x,0)=0.

Thus one can obtain the value — Q of the streamfunction ¥(x, y) on the wave elevation 5(x) as

fne(x;) o

W

JO ay

("ne(x;)

= u'dy

JO

(nglx;) f a;(1) (ik) cosh (i.ky) cos (ikx;) —¢\)dy

= cosh(ikD)

_ M a;(1) sinh [ikne(x;)] cos (ikx;)
- i=21 cosh(ikD)

_sz

(2
<

— Cnel(x;). 07

Define

_ 1 M
‘Q=MQ§‘@>

Amax = MAax Q’—ng Vi< M.

max
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Similar to the method of Rienecker and Fenton,? the cosh(jkD) term was introduced in
expression (71) in order to avoid the undesirable numerical errors caused by the large value of j.
When the number of points M is large, it is suggested to use double-precision data in the
computer programme. We used VAX G-Floating data in our programme, which was executed on
a VAX/VMS computer. It seems particularly necessary to use G-Floating data for very long
waves and for waves near the highest.

4.2.1. Convergence of finite process method. Since it is a new kind of numerical method, the
convergence of the FPM is first examined. We select

Ly =p"", A(p)=(01~-p**

Example 1

Select L,/D =9, kC%/g =07, H,,o/D =05, M = 32 and « = 0:9. The numerical results are
given in Table 1.
Example 2

Select L,,/D = 20, kC?/g = 0-35, H,,,/D = 0-5, M = 32 and a = 0-65. The numerical results are
given in Table II.
Example 3

Select L, /D =40, kC%/g = 020, H,o/D = 05, M = 32 and a = 0-9. The numerical resuits are
given in Table 111
Example 4

Select L,/D = 60, kC?/g = 0-13, H,,o/D = 0:5, M = 64 and a = 0-95. The numerical results are
given in Table IV.

The wave with L,/D = 9 is a moderately long wave. The waves corresponding to L,,/D = 20,
L,/D = 40 and especially L,,/D = 60 are very long waves. From Tables I-IV one can see that

Table I. Convergence of finite process method (L,./D = 9)

Ap 1/10 1/20 1/50 1/100 1/200 1/500
H,/D 04913933 04976689 0-5045102 0-5072117 0-5086361 0-5094969
exp(—kQ/C) 0-5108812 0-5104637 0-5102284 05101570 05101228 05101022
Amax 34803% 1072 16840x 1072  66904x 10>  33450x107% 16768x 1072 67507x107*
e 18268 x 102 94735x 1073  38581x 1073  19396x10™3  97242x10"%  38592x 107 *
e, 36731x 1072 18009x 1072  72612x 1073  36448x 1073  18296x 1073  7:3320x 107*

Table I1. Convergence of finite process method (L,,/D = 20)

Ap 1/10 1/20 1/50 1/100 1/200 1/500
H,/D 02970015 03122617 03215379 0-3238492 03262390 0-3271250
exp(—kQ/C) 07337657 07335614 07334444 0-7334083 07333886 07333791
Ao 20893x 1072 10688x10°2  43367x1073  21737x1073  10966x 1073  44570x 10™*
e, 13901 x 1073 74959x 107%  31629x107%  1-6736x 104 84218 x 1075 33900 x 10™%

e; 24917x1072  12999x 1072 51431x1073  2:5839x 1073  12946x 107  51874x107*
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Table I1I. Convergence of finite process method (L,,/D = 40)

Ap 1/10 1/20 1/50 1/100 1/200 1/500
H,/D 03723232 03911771 0-4029229 0-4069286 0-4089504 04101699
exp(—kQ/C)  0-8561234 0-8560977 0-8560824 0-8560773 0-8560748 0-8560732
Aenan 32188x 1072 16403x1072  66533x1073  33443x 107>  1-6775x10"  67311x10-*
e, 36030x 1073 19052x 1073 78991 x107*  39985x10°¢ 20117x10"* 80770x 105
e 35535x1072  1-8104x 1072  73405x10™%  36884x10"%  1-8489x 103  7-4071x 10~ 4

Table IV. Convergence of finite process method (L, /D = 60)

Ap 1/10 1/20 1/50 1/100 1/200 1/500
H,/D 02927140 0-3074407 03165027 03195666 0-3211073 0:3220346
exp(—kQ/C) 09010935 0-9010919 09010918 09010918 09010919 09010920
Aan 25770x 1072 13133x1072  55239x10"%  26744x10"%  13398x10"° 53588 x 10~*
e, 244391073 13125%1073  55005x 1074  27951x107% 14091 x 10™* 56643 x 1073
e 27968x 1072 14269x 1072  57874x107> 29081x10™*  14578x1073 58401 x 1074

there is convergence for each case. Although the two boundary conditions (7) and (9) are not
solved directly, their maximum non-dimensional errors e, and e, decrease as Ap is decreased. One
could speculate that e, and e, will tend to zero if Ap tends to zero. In the same way, 4, also
decreases, which means that the streamfunction value — Q on the wave elevation tends to the
same. It should be emphasized that this streamfunction value — Q is also obtained indirectly.

Although the FPM also needs an initial solution, it is insensitive to the initial values. For
Example 4, L, /D = 60, corresponding to a very long wave, the wave elevation is very different
from that of the deep water wave which has been applied as the initial wave elevation. Figure 1
shows comparison of the initial deep water wave with the numerical long wave obtained by the
FPM for Ap = 0-02 (Example 4). With the iterative methods used by other authors, it was
necessary sometimes to use the converged solutions obtained for lower waves as the initial
approximation.

By using the FPM, iterative methods can be successfully avoided. The FPM is insensitive not
only to the selected initial solution but also to the number of unknowns. Therefore the
disadvantages and limitations of iterative methods can be overcome. The disadvantage of the
FPM is that it needs more CPU time. This is mainly because the precision is approximately
directly proportional to the CPU time for the FPM. From Tables I-IV one can see that the
errors e, and e, are approximately directly proportional to Ap.

4.2.2. Comparison with the results of other authors. The numerical results of Rienecker and
Fenton? agreed very well with the results of Cokelet® and Vanden-Broeck and Schwartz,! and
even agreed with the experimental results given by Le Méhauté.® It does not seem necessary to
make a further detailed comparison of all of these, for two reasons. One is that the purpose of this
paper is mainly to introduce and examine a new kind of numerical method which can avoid using
iterative methods and can be used to solve 3D non-linear gravity wave problems, e.g. the wave
resistance of a ship moving in deep or shallow water. Another reason, which is perhaps the main
one, is that the method described in this paper is based on the velocity potential function and
therefore it is very difficult to compare the results directly with those of other authors.

In spite of this, some approximate comparisons have been made and are given in Table V.

For a particular value of kC?/g, a large number of computations are needed in order to find a
value of L, /D such that exp(— kQ/C) ~ 0-5. This seems especially difficult for waves near the
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Figure 1. Long wave with L, /D = 60 for Ap = 002

Table V. Comparisons with results of other authors

Results of present method Results of other authors
(FPM) (exp(—kQ/C) = 05)
L,/D exp(—kQ/C)  kC/g H,/D H,/D kC?/g

Reference 5 Reference 2 Reference 1

90158  0-5000197 0-615059 0-1720615 0-1729974 0-615059 0-615059 Not given
89776 (-5006100 0-:631112 0-2528818 0-252630 0-631112 0631112 Not given
88670 0-5004126 0-666501 0-3791625 0-3802645 0666501 0-666501 0-666501
87634 0-5004327 0-706443 0-4898292 0-4944549 0706443 0-706443 0-706443
86900 0-50076340 0748230 0-5959385 0-602447 0-748230 0-748230 0748230
86800 0-5097155 0-764403 0-6497747 0-651251 0-764403 0-764403 0-764403
86795 0-5008378 0-767748 06699720 0-672143 0-767748 0-767748 0-767748

highest. The corresponding values of L, /D are also given in Table V. Although it is not possible
to make a direct comparison, from the results of Table V it would seem reasonable to believe that
the present method could give results which agree well with those of References 1, 2 and 5.

One can compare the present method with the method of Rienecker and Fenton.? Similar to
other authors, their method was based on the streamfunction and Newton’s iterative method was
used to solve the corresponding non-linear algebraic equation. If M points on the wave elevation
are selected, a non-linear algebraic equation with 2M + 5 unknowns must be solved; however,
with the present method, only n, linear equations with M unknown quantities need be solved,
because at each step p,, = mAp the wave elevation y = y(x; p,,) is known. Unlike the methods
based on iterative techniques, the FPM is insensitive to the initial solution and the number of
unknowns. However, much more CPU time is needed. This is perhaps the greatest disadvantage
of the FPM.
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5. CONCLUSIONS

In this paper a typical non-linear problem, namely 2D steep gravity waves in shallow water, was
used to introduce and examine a new kind of numerical method called the finite process method.

The FPM can successfully avoid using iterative methods and therefore can overcome the
disadvantages and limitations of such methods. In comparison with iterative methods, the FPM
is insensitive to the selection of the initial solution and the number of the unknowns. Even for
waves near the highest or for very long waves, e.g. waves with L, /D = 120, a converged numerical
result can be obtained by using the deep water wave as the initial solution. With the method of
Rienecker and Fenton? it was necessary in this situation to extrapolate to the initial approxima-
tion from converged solutions for lower waves.

Although it is rather more difficult to compare the results of the present method directly with
those of other authors, from the approximate comparisons given in Table V one could have
reason to believe that the FPM could indeed be used for the numerical solution of 2D steep
gravity waves in shallow water. It is interesting that, in contrast with the methods of other
authors, the present method is based on the velocity potential function and therefore can be
applied to solve 3D non-linear gravity waves by using the Hess-Smith method, e.g. the wave
resistance of a ship moving in deep or shallow water, which will be discussed in Part 2 of this
series of the author.

In this paper the concepts of process and process derivatives were used. The process is a kind of
continuous mapping which connects the selected initial solution with the solutions of what one
wants to solve. It is interesting that the equations for the first-order process derivatives, called the
first-order process equations, are linear. By means of this property of process, a non-linear
problem (e.g. a non-linear algebraic equation, a set of non-linear algebraic equations, a differ-
ential or partial differential equation, etc.) can be transformed into a set of linear problems,
because it is only needed for the FPM to solve n,, linear equations (n, > 1, Ap = 1/n,). In other
words, a non-linear problem can be approximated by a finite number of linear problems, or
perhaps one could say that a non-linear problem can be discretized into n, linear problems
(n, = 1). Also, the finer the discretization is, i.e. the smaller Ap is, the more exact is this kind of
approximation. This is similar to the finite element method and also to the finite difference
method if we regard each corresponding linear problem as an element of a non-linear problem. It
is well known that a real function can generally be approximated by a finite number of terms of a
Fourier series. One can see that the FPM is similar if we regard the non-linear problem as the
function and the linear problems as the Fourier series.

The disadvantage of the FPM is that more CPU time is needed in order to obtain a sufficiently
accurate result. This is mainly because its precision is approximately directly proportional to the
required CPU time. Thus a more exact result means a higher price. For engineering problems it is
suggested not to use at first a very small value of Ap.
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APPENDIX: NOMENCLATURE

wave velocity
average water depth
matrix of algebraic equations

BT O
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e; element of E

e maximum non-dimensional error of boundary condition (7)
e, maximum non-dimensional error of boundary condition (9)
£(p) first type of process function

£(p) second type of process function

g gravitational acceleration

k wave number

H, wave height

H,, selected initial wave height

H[¢(x,y)] auxiliary function defined in expression (5)

L, wave length

M number of selected points on the wave elevation

P process-independent variable

-Q value of streamfunction ¥ (x, y) on free surface

-0 average value of streamfunction on free surface

RL¢(x, ¥)] auxiliary function defined in expression (4)

S[é(x, y; p); p] auxiliary function defined in expression (35)

T{é(x, y; p) p]
(u, v)

auxiliary function defined in expression (37)
velocity components

(x, ) co-ordinates

v(x,y) streamfunction

¢(x, y) velocity potential function

bo(x, ) initial velocity potential function

de(x, ) final velocity potential function

¢(x,y;p) mapping of ¢(x, y), called the zero-order process for ¢(x, y)
oM(x, y; p) first-order process derivatives for ¢(x, y; p)

n(x) wave elevation

Mo(x) sclected initial wave elevation

(%) final wave elevation

n(x; p) mapping of n(x), called the zero-order process for n(x)
nti(x; p) first-order process derivatives for #(x; p)

o parameter determining the distribution of discretized points
Amax maximum non-dimensional error of — Q on wave elevation
Q region of fluid

Q initial region of fluid
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