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SUMMARY 
In this paper, 2D steep gravity waves in shallow water are used to introduce and examine a new kind of 
numerical method for the solution of non-linear problems called the finite process method (FPM). On the 
basis of the velocity potential function and the FPM, a numerical method for 2D non-linear gravity waves in 
shallow water is described which can be applied to solve 3D problems, e.g. the wave resistance of a ship 
moving in deep or shallow water. The convergence is examined and a comparison with the results of other 
authors is made. 

The FPM can successfully avoid the use of iterative methods and therefore can overcome the dis- 
advantages and limitations of such methods. In contrast to iterative methods, the FPM is insensitive 
to the selection of the initial solution and the number of unknowns. The basic idea of the FPM can be used 
to solve other non-linear problems. Its disadvantage is that much more CPU time is needed to obtain a 
sufficiently accurate result. 

KEY WORDS Non-linear gravity waves Velocity potential Transformation from non-linear to linear 

1 .  INTRODUCTION 

In the study of gravity waves it is generally assumed that the fluid is inviscid. If the flow is 
irrotational, there exists a velocity potential function @(x, y ,  z ;  t )  from which the velocity 
components ( u ,  v,  w )  can be obtained. If the fluid is also incompressible, the velocity potential 
function @(x, y ,  z ;  t )  satisfies the Laplace equation 

V2@ = 0 
throughout the fluid. 

Although the above governing equation for @ is a linear Laplace equation, its two boundary 
conditions on the free surface, called the dynamic and kinematic conditions of the free surface, are 
unfortunately non-linear and must be satisfied on the unknown free surface. Therefore gravity 
wave problems are generally non-linear. This non-linearity leads to difficulties in the numerical 
computation of these types of problems. A particular difficulty for the solution of gravity waves, 
which is perhaps the main difficulty, is that the free surface elevation is unknown but the two 
bbundary conditions must be satisfied on it. 

Generally, a non-linear discretized algebraic equation with a large number of unknown 
quantities will be obtained after numerical discretization of a non-linear problem. The general 
methods used widely to solve these kinds of non-linear algebraic equations are iterative methods. 
However, the convergence of iterative methods depends greatly on not only the selection of initial 
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values but also the number of unknown quantities, i.e. the convergence is sensitive to the number 
of unknowns. Another approach is to use semidirect methods14 which can partly overcome the 
limitation of iterative methods. However, semidirect methods still use the iterative technique to 
solve a set of non-linear algebraic equations at each step of the computation, i.e. semidirect 
methods cannot avoid the application of iterative methods. 

In this paper we try to use 2D gravity waves in shallow water as an example to describe a new 
kind of numerical method for general non-linear problems called the finite process method 
(FPM). The FPM avoids the use of iterative methods. From this viewpoint, one could call it a 
type of direct method for the solution of non-linear problems. 

In 1979, Vanden-Broeck and Schwartz’ reported on the numerical computation of 2D non- 
linear gravity waves in shallow water. They used an analytical function of a complex variable z to 
represent the solution and obtained a non-linear integrodifferential equation for the free surface 
which was solved by Newton’s iterative technique. In 1981, Rienecker and Fenton’ researched the 
same problem from a different angle. They applied a finite Fourier series to give a set of non-linear 
equations which were also solved by using Newton’s iterative method. Many other authors 
(e.g. References 3- 1 1) have studied 2D gravity waves experimentally, theoretically or numerically. 
The numerical results given by different authors using different methods agree well with the 
theoretical results and even with the experimental results. 

The works described above are excellent. If looked at  solely from the viewpoint of the 
numerical computation of 2D gravity waves in shallow water, the present work described in this 
paper would be of little relevance. However, it should be emphasized that the authors mentioned 
above used Newton’s iterative method to solve the non-linear algebraic equations. On the other 
hand, their method could not be applied to solve 3D gravity wave problems, e.g. to compute the 
wave resistance of a ship moving with a constant velocity in shallow water. 

The main purpose of this paper is not to discuss more deeply the numerical method for 2D 
gravity waves in shallow water, but to describe a new kind of numerical method which avoids the 
use of iterative methods. Another purpose of this paper is to describe a general method for the 
solution of 2D and 3D non-linear gravity wave problems which is based on the velocity potential 
function. 

2. MATHEMATICAL DESCRIPTION 

The problem considered here is that of 2D periodic waves moving without change of form over a 
layer of fluid on a horizontal bed. With horizontal co-ordinate x and vertical co-ordinate y, the 
origin is on the bed and moves with the same velocity C as the waves. Therefore all motion is 
steady in the frame of reference. Let D denote the average depth of the water. 

Suppose the flow is irrotational. Then there exists a velocity potential function 4(x, y) such 
that the velocity components (u, v) are given by 

84 a4 
ax aY ’ 

v = -  u = -  

Suppose the fluid is incompressible. Then $(x, y) satisfies Laplace’s equation in the field: 

Suppose the fluid is inviscid and without surface tension. Then, on the free surface, + ( x , y )  
satisfies 

C24xx + g4,++V4V(Vq5V4) - 2Cv4V4, = 0 on y = ~ ( x ) ,  (1) 
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where 

Here g is the gravitational acceleration, q ( x )  denotes the wave elevation and C is the wave 
velocity. 

Expression (2) is the dynamic condition of the free surface. Expression (1) is obtained from the 
dynamic and kinematic conditions of the free surface, and the relation 

a a 
at ax 
- -c- _ -  

is used. 
On the bed, 4(x, y) satisfies 

- a4 = O  on y = O .  
aY 

where 

a4 
aY 
- = 0  o n y = O ,  

3. BASIC IDEA OF FINITE PROCESS METHOD 

Let f ;  (p) andX(p) be real continuous functions which satisfy 

0 for p=O, 1 for p = o ,  
1 for p =  1, 0 for p =  1, 

(3) 

wheref;(p) could be called the first type of process function andJ(p) the second type of process 
function. The simplest first-type process function isf; (p) = p and the simplest second-type process 
function is&(p) = 1 - p. 
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Then a kind of continuous mapping +(x, y)+ (x ,  y ;  p ) ,  q ( x ) + q ( x ;  p) ,  R+R(p) can be 
constructed as follows: 

V24(X, y ;  P) = 0 in Q ( P ) ,  (10) 

(11) 

with boundary conditions 

X(p)RC4(x9 Y; dl +.h(p){RC4(x9 Y ;  p)I - R C M x ,  y)I )  = 0 on y = q(x; p ) ,  

where 

v ( x ;  P) =X(pWC4(x, Y ;  PI1 +fi(PhO(X) on Y = v ( x ;  P). (13) 
Here q,(x) is a freely selected initial wave elevation; 4, is a freely selected initial velocity potential 
which should satisfy 

VZ+,(x, y)  = 0 in Ro,  (14) 
with boundary condition 

840 
aY 

- - = O  o n y = 0 ,  

where the initial definition domain R, of the fluid field is defined by y = qo(x) and y = 0. 

order process; thus (lo)-( 13) could be called the zero-order process equations. 

equation 

For simplicity, &(x, y;  p )  and ~ ( x ;  p ) ,  the mapping of 4(x, y )  and q(x), could be called the zero- 

When p = 0, from the zero-order process equations (10)-(13) one can obtain the initial 

V2$(x, y; 0) = 0 in a,, (16) 

R(#)  = on Y = rlO(X), (17) 

with boundary conditions 

One can see that the initial velocity potential @o(x, y) which satisfies the linear equations (14) and 
(15) is just the solution of the non-linear initial equations (16)-(19), i.e. 

4(X? Y ;  0) = 40(% Y). 

When p = 1, from the zero-order process equations (10)-(13) one can obtain the final equation 

V24(x, y; 1) = 0 in Q f r  (20) 

RC4(x,y; 1)1 = 0 on y = v(x; 11, (21) 

with boundary conditions 



SOLUTION OF GRAVITY WAVE PROBLEMS. 1 73 1 

The final equations (20)-(23) are the same as the original equations (6)-(9) described in Section 2, 
which are just what one wants to solve. Here 4 ( x ,  y ;  1) could be called the final velocity potential, 
denoted as + f ( x ,  y ) ;  and q ( x ;  1) could be called the final wave elevation, denoted as q f ( x ) .  

From the above analysis one can see that the zero-order process equations (10)-(13) connect 
the freely selected initial velocity potential q50(x, y )  and initial wave elevation qo(x)  with 
solutions of the original equations (6)-(9) described in Section 2. The process of changing the 
variable p from zero to unity is just the process of transformation from the selected initial solution 
to the final solution. The zero-order process equations (10)-(13) are a special continuous mapping 
which gives a kind of relation between the selected initial solution &(x,  y ) ,  q o ( x )  and the final 
solution 4 f ( x ,  y ) ,  qf( x ) .  However, this kind of relation is also non-linear in non-linear problems. 
In the following part of this section we try to give a linear relation between initial solution 
4 0 ( x ,  y ) ,  q o ( x )  and final solution 4 f ( x ,  y ) ,  q f ( x )  by using the concept of process derivatives. 

Define 

as the first-order process derivatives of $ ( x , y ; p )  and q ( x ; p ) .  Then the freely selected initial 
solution i # ~ ~ ( x ,  y ) ,  q o ( x )  and the final solution 4 f ( x ,  y ) ,  q f ( x )  have the following integral relations: 

The equations for @ ' ] ( x ,  y; p) and q["(x; p) can be obtained from the zero-order process 
equations (10)-(13) in the following way. 

From (10) and (12) one has 

(28) 
a 
-(V+) = V z 4 [ l 1 ( x ,  y ;  p) = 0 in R(p), 
a P  

The dynamic and kinematic conditions of the free surface must be satisfied on the wave elevation 
y = q ( x ;  p ) ,  which is also a function of the process-independent variable p .  Therefore deriving (1 1) 
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where 
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and (13) for the process-independent variable p one can obtain 

On the wave elevation y = ~ ( x ;  p )  one has 

Substituting (33) in (31) one has 

For simplicity, define 

Substituting (32) in (30) and using (34) and (35) one has 

where 

According to (4) one has 

In the same way, according to (5)  one can obtain 
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Thus substituting (38) and (39) in (36) one has 

= TC4(x, Y; p ) ;  PI on y = q(x; p ) .  (40) 
Here the relation 

has been used. 

differential equation 

4:: + 4gl = 0 in R(p) 141) 

Therefore, according to (28), (29), (34) and (40), $[ '](x ,  y; p )  and q['](x; p) satisfy the partial 

V24[l1(x, y ;  p )  = 0 in R(p), (42) 
with boundary conditions 

while 

Equations (42)-(45) could be called the first-order process equations. 
It is very interesting that equations (42)-(44) are a set of linear partial differential equations for 

#l] (x ,  y; p). If 4(x, y; p )  and q(x; p )  are known, 4[11(x, y; p) and $"(x; p )  can be obtained by 
solving these linear partial differential equations. Then according to (26) and (27) one has 

4 ( x ,  Y ;  p + 4) = 4 ( x ,  Y ;  P )  + 4"](x ,  Y ;  p)Ap, 

q(x; p + AP) = q(x; P) + v [ Y x ;  P)Q. 

In this way one can obtain the final solution 4 f ( x ,  y), qf(x) indirectly. Generally the first-order 
process equations are linear although the zero-order process is non-linear. This is the most 
important property of the process. A pure mathematical proof of this property can be given but 
will be described in other papers of the author. 

If we solve the non-linear zero-order process equations (10)-(13) directly, it seems difficult to 
avoid using iterative methods. However, by solving the n, linear first-order process equations 
(42)-(45) for @'](x,y;p)  and q['l(x;p) (n,  2 1 ,  Ap = l/n,), we can obtain the solution of the 
original equations (6)-(9) indirectly without using iterative methods. In other words, a non-linear 
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problem can be transformed to a complex linear problem by using the concept of process 
derivatives. 

From (4) and (5) one can obtain 

= 2[(4x - W X X  + 4 y 4 x y l ,  aRC4(x, Y; P)1 
W X  

The process of numerical computation can be described simply as follows. 

1. Select the initial wave elevation qo(x) and initial velocity potential 40(x, y). 
2. Let pi = iAp for i = 0, 1,2,. . . , np- 1, where, Ap = l/n,. 
3. Solve the linear partial differential equations (42)-(44) to obtain the value of b[”(x, y; pi). 
4. Compute the value of q[’](x; pi) by means of expression (34). 
5. Compute the values of wave elevation and velocity potential at the next step p i+ l :  

6. If pi+ < 1, then go back to step 2. 

Here the definition region p E [0, 11 of the process-independent variable p is discretized, which is 
why this method is called the finite process method. 

One can see that in the above numerical computation, only n, linear partial differential 
equations (42)-(44) need be solved (n, 2 1, Ap = l/n,). This means that the original non-linear 
problem has been transformed to a set of n, linear problems (n, 2 1). Theoretically, by means of a 
large computer, almost all linear problems can be solved without great difficulty. Thus from the 
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viewpoint of the FPM, theoretically it seems that a non-linear problem could also be solved by a 
large computer because the non-linear problem can be approximated by a set of np linear 
problems ( n p  2 1). In other words, a non-linear problem is just a very complex linear one from the 
viewpoint of the FPM. 

In the next section, detailed numerical formulae and numerical results for 2D progressive 
gravity waves in shallow water are given. It should be emphasized that the numerical method 
described here can also be used to solve 3D gravity wave problems, e.g. the wave resistance of a 
ship moving in deep or shallow water, by making only a simple expansion and using the 
Hess-Smith method. 

4. NUMERICAL SOLUTION OF GRAVITY WAVES IN SHALLOW WATER 

where 
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while r,Jl](x; p )  satisfies 
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Let k = 2n/L, denote the wave number. Then it is easily seen that 
m 

with 
cosh ( j k y )  sin ( jkx)  

4j(" y )  = cash ( j k D )  ' 

satisfies the Laplace equation (58)  and the bed condition (60). Here the a j ( p ) ( j  = 1,2, 
only dependent on the process-independent variable p .  

Then from (70) one has 

. . .  

It can be proved that r#~['](x, y; p )  described above also satisfies the Laplace equation (62) and the 
corresponding bed condition (64). 

In practice, only a finite number of terms 4j(x ,  y) can be selected. Similar to the method of 
Rienecker and Fenton,' this is the only approximation made in this numerical method. Suppose 
M terms d j ( x ,  y) ( j  = 1,2,. . . , M )  are selected. Then one has 

M 

j =  1 
4 ( x ,  Y;  P) = 1 aj(p)$j(x+ Y) ,  (73) 

For simplicity, define 

a ( ~ )  = { a j b ) ] ?  a['l(p) = {a:'](p)) ( j  = 1,2, .  . . , M ) .  

Substituting (73) and (74) in (63) one can obtain the equation for the first-order process derivatives 

( j k )  sinh ( j k y )  sin ( j k x )  
('j)' = cosh ( j k D )  ' 

- (jk)' cosh ( jky)  sin ( j k x )  
( 4 j L  = cosh ( j k D )  9 

( j l ~ ) ~  sinh (jky)cos ( j k x )  
( 4 i ) x y  = cosh ( j k D )  
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Select a, = { u j }  ( j  = 1,2 , .  . . , M) as the initial value of a(p) ,  where 

21 = HwO 2 /( n> cosh(kl)), 

i j = O  for j = 2 , 3  , . . . ,  M. 

Then one obtains the initial velocity potential C # J ~ ( X ,  y )  as 

4o(x,  Y )  = 4 ( x ,  Y ;  0) = i141(x ,  Y) .  

Hw0 
~ O ( X )  = -y- cos(kx). 

The initial wave elevation qo(x)  can be given in the form 

In order to obtain the value of a [ ' ] ( p )  = { ayl(p)}  ( j  = 1,2, .  . . , M) from the linear equation 
(75), M points ( x i ,  y i )  ( i  = 1,2, .  . . , M) on the free surface y= q(x; p) must be given. Owing to the 
symmetry, one can distribute these M points on the region [Lw/2, Lw] as 

( j  = 0, 1,2, .  . . , M - l), xj = "[ 1 + (&]I, y j  = --C0S(kXj) H w o  
2 2 

where L, is the wave length. Here the parameter a is used to determine the distribution form of 
the M points. When a = 1, the M points are equally spaced in the horizontal direction. When 
a < 1, the points are spaced coarsely near the crest ( x  = Lw), similar to the Vanden- 

a(p, + Ap) = a(p,) + a['](p,)Ap for pm + Ap < 1, 
M 

Then q [ ' l ( x i ;  p,) can be obtained as 
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Thus the new free surface elevation can be obtained as 

?(xi; p ,  + AP) = v(xi; p , )  + vr1](xi; p , ) A p  for p ,  + Ap < 1 .  (93) 
Therefore from the above method one can obtain the values of a(Ap) and q ( x ;  Ap) if the initial 

wave elevation q o ( x )  and initial velocity potential 40(x, y) are given by selecting freely the initial 
wave height H w o .  In the same way, from a(Ap) and ~ ( x ;  Ap) one can obtain a(2Ap) and ~ ( x ;  ZAP), 
etc. If a(n,Ap) and q(x; n,Ap) are known for Ap = l/n,, then the solution of the original equations 
(6)-(9) has been obtained. 

The error in this numerical method is due to two reasons. One is that a finite number of terms 
bj(x, y) ( j  = 1,2, .  . . , M )  have been used. On the other hand, the expressions (88) and (93) are 
obtained by dispersing the integral relations (26) and (27). This means that the process region 
p E [0, 13 is discretized. 

It is very interesting that the method described above can successfully avoid the use of iterative 
methods which have traditionally been applied to solve non-linear problems. Therefore it is 
possible for the above method to overcome the disadvantages of iterative methods. 

For the above numerical method, the wave length L,, water depth D and wave velocity C have 
to be known quantities and a selected initial wave height H,, must be given. One can select the 
wave depth D and gravitational acceleration g so as to make all quantities non-dimensional. Thus 
only the ratio of wave length to water depth, L, /D,  and the non-dimensional wave velocity 
kC2/g have been known quantities and an initial ratio of wave height to wave length, HWo/L,, 
must be selected. 

4.2. Numerical results 

The method described in this paper is based on the velocity potential function 4(x, y), whereas 
the methods of Vanden-Broeck and Schwartz' and Rienecker and Fenton' were based on the 
streamfunction $(x, y). Using the streamfunction $(x, y), the kinematic condition of the free 
surface can be represented simply as 

$(x, Y) = -Q  on Y = ?(XI. 
Therefore all the results of other authors were given under a constant value of exp(-kQ/C), 
e.g. 0.5 or 0.9. Exp(-kQ/C) is a function of L,/D and kC2/g. For constant exp(- kQ/C) the 
value of L,/D is a function of kC2/g. However, the method described in this paper does not 
directly use - Q ,  the value of the streamfunction on the wave free surface. Instead, the non- 
dimensional wave velocity kC2/g is a known quantity and the wave height-to-length ratio H,/Lw 
is the numerical result obtained by means of the FPM. This is very different from the methods of 
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other authors. Therefore it is rather more difficult to compare directly the results obtained by the 
FPM with those of other authors. In spite of this, approximate comparisons are given in order to 
examine our numerical method, although a direct comparison could not be made. 

The solutions of the original equations (6)-(9) for gravity waves in shallow water are obtained 
indirectly by solving np linear algebraic equations ( np 2 1, Ap = l/np). Therefore the simplest way 
to examine our new numerical method is to inspect whether or not the two boundary conditions 
(7) and (9) have been satisfied. For simplicity, let 

and 

denote the maximum non-dimensional errors of boundary conditions (7) and (9) respectively, 
where qf is the numerical result for the wave elevation. 

Another way to test our numerical method is to examine whether or not the values of the 
streamfunction $(x, y) on the wave elevation are the same. According to (73), the horizontal 
velocity u(  x, y) can be represented as 

aj( l)(jk)cosh(jky)cos(jkx) u = - =  
ax j = 1  c cosh( j k D )  

In the frame of reference moving at the same velocity C as the wave, the horizontal velocity u’ is 

u’ = u - c. 
Similar to other authors, one can suppose 

$(x, 0) = 0. 

Thus one can obtain the value - Q of the streamfunction $(x, y) on the wave elevation vf(x) as 

qdx, 1 
= jo u’dy 

= IT’( ;l 
-C)dY 

ai( 1) (ik) cosh (iky) cos (ikxj) 
cosh (ik D )  

ai(l) sinh [ikq,(xj)] cos (ikxj) = c  cosh (ikD) - CVf(xj)- 
i =  1 

Define 

(97) 
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Similar to the method of Rienecker and Fenton,’ the cosh(jkD) term was introduced in 
expression (71) in order to avoid the undesirable numerical errors caused by the large value ofj. 
When the number of points M is large, it is suggested to use double-precision data in the 
computer programme. We used VAX G-Floating data in our programme, which was executed on 
a VAX/VMS computer. It seems particularly necessary to use G-Floating data for very long 
waves and for waves near the highest. 

4.2.1. Convergence of$nite process method. Since it is a new kind of numerical method, the 
convergence of the FPM is first examined. We select 

h(P) = P1’l? &(PI = (1 - P)l’l 

Example 1 

given in Table I. 
Select L , / D  = 9, kC2/g = 0.7, H , , / D  = 05,  M = 32 and a = 0.9. The numerical results are 

Example 2 

given in Table 11. 
Select L,/D = 20, kCZ/g = 0-35, H, , /D  = 05,  M = 32 and a = 0.65. The numerical results are 

Example 3 

given in Table 111. 
Select L, /D  =40, kC2/g = 0.20, H, , /D  = 0.5, M = 32 and LY = 09.  The numerical results are 

Example 4 

Select L, /D  = 60, kC’/g = 013, H , , / D  = 0.5, M = 64 and a = 0.95. The numerical results are 
given in Table IV. 

The wave with L,/D = 9 is a moderately long wave. The waves corresponding to L , / D  = 20, 
L,/D = 40 and especially L , / D  = 60 are very long waves. From Tables I-IV one can see that 

Table I. Convergence of finite process method (L,/D = 9) 

AP 1/10 1/20 1/50 l j l 0 0  1 /200 1/500 

H , l D  0.4913933 0.4976689 0,5045102 0.5072117 0.5086361 0.5094969 

L 3.4803 x lo-’ 1.6840 x lo-’ 6.6904~ lo-’ 3.3450~ 1.6768 x lo-’ 6.7507~ 
el 1.8268 x lo-’  9.4735 x 3.8581 x lo-’ 1.9396 x lo-’  97242 x 3.8592 x 
e2 3.6731 x 1.8009 x 7.2612 x lo- ’  3.6448 x 1.8296 x 7.3320 x 

exp(- kQ/C) 05108812 0.5104637 05102284 05101570 05101228 0~5101022 

Table 11. Convergence of finite process method (L,/D = 20) 

AP 1/10 1/20 1/50 1/100 1/200 l/500 

H , / D  0.2970015 0 3  122617 0.3215379 03238492 0.3262390 0.3271250 
0.7333791 exp( - kQ/C) 0.7337657 0.7335614 0.7334444 0.7334083 0.7333886 

L 2.0893 x 1.0688 x 4.3367 x 2.1737 x 1.0966 x 4.4570 x 
el 1.3901 x lo-’ 7.4959 x 3.1629 x 1.6736 x 8.4218 x 3.3900 x 
e2 24917 x lo-’ 1.2999 x 5.1431 x 25839 x 1.2946 x lo-’ 5,1874 x 
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Table 111. Convergence of finite process method (L,/D = 40) 

AP 1/10 1/20 1/50 1/100 11200 lj500 
~~ 

H,/D 0.3723232 0.3911771 04029229 04069286 04089504 0.4 10 1699 
exp (- kQ/C)  0.8561234 0.8560977 0.8560824 04560773 04560748 0,8560732 

3,2188 x 1.6403 x 6.6533 x 3.3443 x 1.6775 x 6.731 1 x 
3,6030 x 1.9052 x 7.8991 x 3.9985 x 2.0117 x 8.0770 x lo-’ e1 

e2 3.5535 x 1,8104 x 7.3405 x 3.6884 x 1.8489 x 7,4071 x 

Amax 

Table IV. Convergence of finite process method (L,/D = 60) 

AP 1/10 1/20 1/50 1/100 1 /200 11500 

0.3 195666 0.3211073 0.3220346 H J D  
exp(- kQ/C)  0.9010935 0.901 09 19 0.90 109 18 0.901 09 18 0.90109 19 0.9010920 
Amax 2 . 5 7 7 0 ~  lo-’ 1.3133 x lo-’ 5.5239 x 2 . 6 7 4 4 ~  1.3398 x lo-’ 5.3588 x 
el 

2.7968 x 1.4269 x 5.7874 x 2.9081 x 1.4578 x 5,8401 x eZ 

0.2927140 0.3074407 0.3165027 

2.4439 x 1 0 - 3  1.3125 x 10-3 5.5005 x 10-4 2.7951 x 10-4 1.4091 x 10-4 5.6643 x 1 0 - 5  

there is convergence for each case. Although the two boundary conditions (7) and (9) are not 
solved directly, their maximum non-dimensional errors el and e2 decrease as Ap is decreased. One 
could speculate that el  and e, will tend to zero if Ap tends to zero. In the same way, I,,, also 
decreases, which means that the streamfunction value - Q on the wave elevation tends to the 
same. It should be emphasized that this streamfunction value - Q is also obtained indirectly. 

Although the FPM also needs an initial solution, it is insensitive to the initial values. For 
Example 4, L,/D = 60, corresponding to a very long wave, the wave elevation is very different 
from that of the deep water wave which has been applied as the initial wave elevation. Figure 1 
shows comparison of the initial deep water wave with the numerical long wave obtained by the 
FPM for Ap = 0.02 (Example 4). With the iterative methods used by other authors, it was 
necessary sometimes to use the converged solutions obtained for lower waves as the initial 
approximation. 

By using the FPM, iterative methods can be successfully avoided. The FPM is insensitive not 
only to the selected initial solution but also to the number of unknowns. Therefore the 
disadvantages and limitations of iterative methods can be overcome. The disadvantage of the 
FPM is that it needs more CPU time. This is mainly because the precision is approximately 
directly proportional to the CPU time for the FPM. From Tables I-IV one can see that the 
errors el and e2 are approximately directly proportional to Ap. 

4.2.2, Comparison with the results of other authors. The numerical results of Rienecker and 
Fenton’ agreed very well with the results of Cokelets and Vanden-Broeck and Schwartz,’ and 
even agreed with the experimental results given by Le Mehautt.* It does not seem necessary to 
make a further detailed comparison of all of these, for two reasons. One is that the purpose of this 
paper is mainly to introduce and examine a new kind of numerical method which can avoid using 
iterative methods and can be used to solve 3D non-linear gravity wave problems, e.g. the wave 
resistance of a ship moving in deep or shallow water. Another reason, which is perhaps the main 
one, is that the method described in this paper is based on the velocity potential function and 
therefore it is very difficult to compare the results directly with those of other authors. 

In spite of this, some approximate comparisons have been made and are given in Table V. 
For a particular value of kC2/g, a large number of computations are needed in order to find a 

value of L,/D such that exp( - kQ/C)  z 0.5. This seems especially difficult for waves near the 
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Figure 1. Long wave with L,/D = 60 for Ap = 002 

Table V. Comparisons with results of other authors 

Results of present method 
(FPM) 

Results of other authors 
(exp ( - kQ/C) = 05) 

L I D  ~ X P  ( -  kQ/C) kCZlg HWlD HWlD kC21g 

Reference 5 Reference 2 Reference 1 
~ ~~ 

9.0158 0.5000197 0.615059 0.1720615 0-1729974 0.615059 0.615059 
8.9776 05006100 0.631 112 02528818 0.252630 0.631 112 0.631112 
8.8670 0.5004126 0.666501 03791625 0.3802645 0.666501 0.666501 
8.7634 0.5004327 0.706443 0.4898292 0.4944549 0.706443 0.706443 
8.6900 0.50076340 0.748230 0.5959385 0.602447 0.748230 0.748230 
8.6800 0.50971 55 0.764403 0.6497747 0.651 251 0.764403 0.764403 
8.6795 0.5008378 0.767748 0.6699720 0.672143 0.767748 0.767748 

- 

Not given 
Not given 
0.666501 
0.706443 
0.748230 
0.764403 
0.767748 

highest. The corresponding values of L,/D are also given in Table V. Although it is not possible 
to make a direct comparison, from the results of Table V it would seem reasonable to believe that 
the present method could give results which agree well with those of References 1, 2 and 5. 

One can compare the present method with the method of Rienecker and Fenton2 Similar to 
other authors, their method was based on the streamfunction and Newton’s iterative method was 
used to solve the corresponding non-linear algebraic equation. If M points on the wave elevation 
are selected, a non-linear algebraic equation with 2M + 5 unknowns must be solved; however, 
with the present method, only np linear equations with M unknown quantities need be solved, 
because at each step pm = mAp the wave elevation y = q ( x ;  p, )  is known. Unlike the methods 
based on iterative techniques, the FPM is insensitive to the initial solution and the number of 
unknowns. However, much more CPU time is needed. This is perhaps the greatest disadvantage 
of the FPM. 
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5. CONCLUSIONS 

In this paper a typical non-linear problem, namely 2D steep gravity waves in shallow water, was 
used to introduce and examine a new kind of numerical method called the finite process method. 

The FPM can successfully avoid using iterative methods and therefore can overcome the 
disadvantages and limitations of such methods. In comparison with iterative methods, the FPM 
is insensitive to the selection of the initial solution and the number of the unknowns. Even for 
waves near the highest or for very long waves, e.g. waves with L,/D = 120, a converged numerical 
result can be obtained by using the deep water wave as the initial solution. With the method of 
Rienecker and Fenton’ it was necessary in this situation to extrapolate to the initial approxima- 
tion from converged solutions for lower waves. 

Although it is rather more difficult to compare the results of the present method directly with 
those of other authors, from the approximate comparisons given in Table V one could have 
reason to believe that the FPM could indeed be used for the numerical solution of 2D steep 
gravity waves in shallow water. It is interesting that, in contrast with the methods of other 
authors, the present method is based on the velocity potential function and therefore can be 
applied to solve 3D non-linear gravity waves by using the Hess-Smith method, e.g. the wave 
resistance of a ship moving in deep or shallow water, which will be discussed in Part 2 of this 
series of the author. 

In this paper the concepts of process and process derivatives were used. The process is a kind of 
continuous mapping which connects the selected initial solution with the solutions of what one 
wants to solve. It is interesting that the equations for the first-order process derivatives, called the 
first-order process equations, are linear. By means of this property of process, a non-linear 
problem (e.g. a non-linear algebraic equation, a set of non-linear algebraic equations, a differ- 
ential or partial differential equation, etc.) can be transformed into a set of linear problems, 
because it is only needed for the FPM to solve n, linear equations (n, 2 1, Ap = l/n,). In other 
words, a non-linear problem can be approximated by a finite number of linear problems, or 
perhaps one could say that a non-linear problem can be discretized into n, linear problems 
(n, 2 1). Also, the finer the discretization is, i.e. the smaller Ap is, the more exact is this kind of 
approximation. This is similar to the finite element method and also to the finite difference 
method if we regard each corresponding linear problem as an element of a non-linear problem. It 
is well known that a real function can generally be approximated by a finite number of terms of a 
Fourier series. One can see that the FPM is similar if we regard the non-linear problem as the 
function and the linear problems as the Fourier series. 

The disadvantage of the FPM is that more CPU time is needed in order to obtain a sufficiently 
accurate result. This is mainly because its precision is approximately directly proportional to the 
required CPU time. Thus a more exact result means a higher price. For engineering problems it  is 
suggested not to use at first a very small value of Ap. 
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APPENDIX: NOMENCLATURE 

C 
D 
E 

wave velocity 
average water depth 
matrix of algebraic equations 
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element of E 
maximum non-dimensional error of boundary condition (7) 
maximum non-dimensional error of boundary condition (9) 
first type of process function 
second type of process function 
gravitational acceleration 
wave number 
wave height 
selected initial wave height 
auxiliary function defined in expression (5 )  
wave length 
number of selected points on the wave elevation 
process-independent variable 
value of streamfunction $ ( x ,  y )  on free surface 
average value of streamfunction on free surface 
auxiliary function defined in expression (4) 
auxiliary function defined in expression (35) 
auxiliary function defined in expression (37) 
velocity components 
co-ordinates 
streamfunction 
velocity potential function 
initial velocity potential function 
final velocity potential function 
mapping of dJ(x, y),  called the zero-order process for dJ(x, y )  
first-order process derivatives for $ ( x ,  y; p )  
wave elevation 
selected initial wave elevation 
final wave elevation 
mapping of ~ ( x ) ,  called the zero-order process for q ( x )  
first-order process derivatives for q(  x; p )  
parameter determining the distribution of discretized points 
maximum non-dimensional error of - Q on wave elevation 
region of fluid 
initial region of fluid 
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